题目内容
| AB |
| a |
| AD |
| b |
| BD |
| c |
(1)求作
| a |
| b |
| c |
| a |
| b |
| c |
(2)求|
| AB |
| BC |
| CD |
| DA |
| AB |
| BC |
| DC |
| AD |
分析:(1)根据向量加法的平行四边形法则三角形法则和相等向量,作出
+
+
,-
-
+
;
(2)利用向量加法的三角形法则,|
+
+
+
|和|
+
+
+
|进行化简,再求其值即可.
| a |
| b |
| c |
| a |
| b |
| c |
(2)利用向量加法的三角形法则,|
| AB |
| BC |
| CD |
| DA |
| AB |
| BC |
| DC |
| AD |
解答:
解:(1)①连接AC,则
+
=
,
②过点A做
=
,
③以AC、AF为邻边作平行四边形ACEF,则
=
+
+
,
=-
-
+
;
(2)
+
+
+
|=|
|=0,
|
+
+
+
|=|
+
|=2
.
| a |
| b |
| AC |
②过点A做
| AF |
| BD |
③以AC、AF为邻边作平行四边形ACEF,则
| AE |
| a |
| b |
| c |
| DF |
| a |
| b |
| c |
(2)
| |AB |
| BC |
| CD |
| DA |
| 0 |
|
| AB |
| BC |
| DC |
| AD |
| AC |
| AC |
| 2 |
点评:此题考查向量加法减法的运算以及其几何意义,熟记基础知识是解题的关键,体现了数形结合的思想,属基础题.
练习册系列答案
相关题目