题目内容
已知函数f(x)为R上的单调函数,且其图象过点(0,-4),(2,2),则不等式|f(-x)+1)|<3的解为( )
分析:首先分析题目求不等式|f(-x)+1|<3的解,化简后为-4<f(-x)<2,即求函数f(-x)在值域(-4,2)上的定义域.故可设-x=t根据已知条件函数f(x)为R上的单调函数,且其图象过点(0,-4),(2,2),即可解出x的范围.即解集.
解答:解;已知函数f(x)为R上的单调函数,且其图象过点(0,-4),(2,2).
故可以判断函数图象在区间(0,2)上的值域为(-4,2).
|f(-x)+1|<3,化简为-4<f(-x)<2
设-x=t,故有0<-x=t<2,故-2<x<0.
故先D.
故可以判断函数图象在区间(0,2)上的值域为(-4,2).
|f(-x)+1|<3,化简为-4<f(-x)<2
设-x=t,故有0<-x=t<2,故-2<x<0.
故先D.
点评:此题主要考查绝对值不等式的解法问题,其中涉及到函数图象和单调性的问题,属于不等式与函数方面的综合性问题,计算量小,属于中档题目.
练习册系列答案
相关题目
已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:

那么,不等式|f-1(x-1)|<2的解集是( )
那么,不等式|f-1(x-1)|<2的解集是( )
A、{x|
| ||
B、{x|
| ||
| C、{x|1<x<2} | ||
| D、{x|1<x<5} |