题目内容
(2008•河西区三模)设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b2=7,a3+b3=16.
(1)求{an},{bn}的通项公式;
(2)求数列{
}的前n项和Sn.
(1)求{an},{bn}的通项公式;
(2)求数列{
| an | bn |
分析:(1)设出等差数列的公差和等比数列的公比,由题意列式求出公比和公差,则{an},{bn}的通项公式可求;
(2)直接利用错位相减法求数列{
}的前n项和.
(2)直接利用错位相减法求数列{
| an |
| bn |
解答:解:(1)设{an}的公差为d,{bn}的公比为q
则
,即
<2>-<1>×2得,q2-2q-3=0,即(q-3)(q+1)=0.
∴q=3,q=-1(舍),代入<1>得d=3.
∴an=1+(n-1)•3=3n-2,bn=3n-1
(2)
=
∴Sn=1+
+
+
+…+
①
3Sn=3+4+
+
+…+
②
②-①得2Sn=3+3+
+
+…+
-
=3+3(1+
+
+…+
)-
=3+3•
-
=3+
•(1-
)-
=
-
∴Sn=
-
.
则
|
|
<2>-<1>×2得,q2-2q-3=0,即(q-3)(q+1)=0.
∴q=3,q=-1(舍),代入<1>得d=3.
∴an=1+(n-1)•3=3n-2,bn=3n-1
(2)
| an |
| bn |
| 3n-2 |
| 3n-1 |
∴Sn=1+
| 4 |
| 3 |
| 7 |
| 32 |
| 10 |
| 33 |
| 3n-2 |
| 3n-1 |
3Sn=3+4+
| 7 |
| 3 |
| 10 |
| 32 |
| 3n-2 |
| 3n-2 |
②-①得2Sn=3+3+
| 3 |
| 3 |
| 3 |
| 32 |
| 3 |
| 3n-2 |
| 3n-2 |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n-2 |
| 3n-2 |
| 3n-1 |
=3+3•
1-
| ||
1-
|
| 3n-2 |
| 3n-1 |
| 9 |
| 2 |
| 1 |
| 3n-1 |
| 3n-2 |
| 3n-1 |
=
| 15 |
| 2 |
| 6n+5 |
| 2•3n-1 |
∴Sn=
| 15 |
| 4 |
| 6n+5 |
| 4•3n-1 |
点评:本题考查了等差数列和等比数列的性质,考查了错位相减法求数列的和,是中档题.
练习册系列答案
相关题目