题目内容
设A(3,3,1)、B(1,0,5)、C(0,1,0),则AB的中点M到C点的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:先由中点坐标公式求得AB的中点M的空间直角坐标,再利用空间坐标系中两点间的距离公式求出M到C点的距离即可.
解答:解:∵A(3,3,1)、B(1,0,5)
∴AB的中点M坐标为:(2,
,3),
又∵C(0,1,0),
∴M到C点的距离为:
d=
=
.
故选C.
∴AB的中点M坐标为:(2,
| 3 |
| 2 |
又∵C(0,1,0),
∴M到C点的距离为:
d=
(2-0)2+(
|
| ||
| 2 |
故选C.
点评:本小题主要考查空间直角坐标系、距离公式等基础知识,考查点、线、面间的距离计算,考查空间想象力、化归与转化思想.属于基础题.
练习册系列答案
相关题目
设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。
对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):
记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 对如下数表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)设数表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因为
,![]()
所以![]()
(2) 不妨设
.由题意得
.又因为
,所以
,
于是
,
,
![]()
所以
,当
,且
时,
取得最大值1。
(3)对于给定的正整数t,任给数表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表
,并且
,因此,不妨设
,
且![]()
。
由
得定义知,
,![]()
![]()
又因为![]()
所以![]()
![]()
![]()
所以,![]()
对数表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
则
且
,
综上,对于所有的
,
的最大值为![]()