题目内容
设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若{an}既是等差数列又是等比数列,则an=an+1(n∈N*);
②若Sn=an2+bn(a 、 b∈R),则{an}是等差数列;
③若Sn=2-2an,则{an}是等比数列.
这些命题中,真命题的序号是
①若{an}既是等差数列又是等比数列,则an=an+1(n∈N*);
②若Sn=an2+bn(a 、 b∈R),则{an}是等差数列;
③若Sn=2-2an,则{an}是等比数列.
这些命题中,真命题的序号是
①,②,③
①,②,③
.分析:利用前n项和公式求解通项公式,并验证n=1时,是否适合,n=1时∵a1=s1;n>1时,an=sn-sn-1,再根据等差、等比数列定义判断.
解答:解:∵数列{an}既是等差又是等比,an+1-an=d,
=q,∵
=1+
=q,d、q都是常数,∴an为常数,∴①√;
∵a1=s1=a+b,n>1,an=sn-sn-1=2an-a+b,∴n≥1,an=2an-a+b,
∵an+1-an=2a(n+1)-a+b-2an+a-b=2a(常数),∴{an}为等差数列,②√;
∵a1=s1=
,a1+a2=2-2a2⇒a2=
,∴
=
,当n>1时,an=sn-sn-1=2-2an-2+2an-1,∴3an=2an-1⇒
=
∴{an}为等比数列,③√
故答案是①②③
| an+1 |
| an |
| an+1 |
| an |
| d |
| an |
∵a1=s1=a+b,n>1,an=sn-sn-1=2an-a+b,∴n≥1,an=2an-a+b,
∵an+1-an=2a(n+1)-a+b-2an+a-b=2a(常数),∴{an}为等差数列,②√;
∵a1=s1=
| 2 |
| 3 |
| 4 |
| 9 |
| a2 |
| a1 |
| 2 |
| 3 |
| an |
| an-1 |
| 2 |
| 3 |
故答案是①②③
点评:本题考查等差数列、等比数列的判断与证明,利用前n项和求解通项公式时,要验证n=1时是否适合.
练习册系列答案
相关题目