题目内容
已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的前60项和为
1830
1830
.分析:累乘法:由an=n(an+1-an),得
=
,则an=a1•
•
•
…
,代入数值即可求得an,注意验证a1是否满足.
| an+1 |
| an |
| n+1 |
| n |
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
解答:解:由an=n(an+1-an),得
=
,
所以,当n≥2时,累积得an=a1•
•
•
…
=1×
×
×
×…×
=n,
又a1也满足上式,故an=n,
所以数列{an}的前60项和为
=1830.
故答案为:1830.
| an+1 |
| an |
| n+1 |
| n |
所以,当n≥2时,累积得an=a1•
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
=1×
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n |
| n-1 |
又a1也满足上式,故an=n,
所以数列{an}的前60项和为
| 60(60+1) |
| 2 |
故答案为:1830.
点评:本题考查数列的递推式及数列求和,若数列{an}满足
=f(n),则往往运用累积法求an,注意验证a1.
| an+1 |
| an |
练习册系列答案
相关题目