题目内容
已知数列{an}满足:a1=
,an+1=an2+an,用[x]表示不超过x的最大整数,则[
+
+…+
]的值等于( )
| 1 |
| 2 |
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2011+1 |
分析:由题意说明数列的项为正,化简数列递推关系式为
=
-
,求出
+
+…+
的范围,即可求出表达式的最大整数.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2011+1 |
解答:解:又因为an+1=an2+an,即an+1-an =an2>0,所以数列是增数列,
并且
>0,
又因为an+1=an2+an,即an+1=an (1+an),
=
=
-
所以
=
-
,即
=
-
,
+
+…+
=
-
+
-
+…+
-
=
-
<
=2,
a1=
,a2=
,a3=
,
+
=
+
>1.
所以
+
+…+
∈(1,2).
所以[
+
+…+
]=1.
故选B.
并且
| 1 |
| an |
又因为an+1=an2+an,即an+1=an (1+an),
| 1 |
| an+1 |
| 1 |
| an•(1+an) |
| 1 |
| an |
| 1 |
| 1+an |
所以
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2011+1 |
=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2010 |
| 1 |
| a2011 |
=
| 1 |
| a1 |
| 1 |
| a2011 |
| 1 |
| a1 |
a1=
| 1 |
| 2 |
| 3 |
| 4 |
| 16 |
| 21 |
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 2 |
| 3 |
| 4 |
| 7 |
所以
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2011+1 |
所以[
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| a2011+1 |
故选B.
点评:本题考查数列的递推关系式的应用,新定义的应用,确定表达式的取值范围是解题的关键,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关题目