题目内容
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(1)求数列{an}的通项公式;
(2)设bn=2an+2n,求数列{bn}的前n项和Tn.
解:(1)设等差数列{an}的首项为a1,公差为d,
由题意,得![]()
解得
∴an=2n-1.
(2)∵bn=2an+2n=
·4n+2n,
∴Tn=b1+b2+…+bn
=
(4+42+…+4n)+2(1+2+…+n)
=
+n2+n=
·4n+n2+n-
.
练习册系列答案
相关题目
题目内容
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(1)求数列{an}的通项公式;
(2)设bn=2an+2n,求数列{bn}的前n项和Tn.
解:(1)设等差数列{an}的首项为a1,公差为d,
由题意,得![]()
解得
∴an=2n-1.
(2)∵bn=2an+2n=
·4n+2n,
∴Tn=b1+b2+…+bn
=
(4+42+…+4n)+2(1+2+…+n)
=
+n2+n=
·4n+n2+n-
.