题目内容
设集合A={x|2(log
x)2-21log8x+3≤0},若当x∈A时,函数f(x)=log2
•log2
的最大值为2,求实数a的值.
| 1 |
| 2 |
| x |
| 2a |
| x |
| 4 |
∵log
x =-log2x ,log8x =
log2x
∴不等式2(log
x)2-21log8x+3≤0?2(-log2x)2-
log2x+3≤0
即2(log2x)2-7log2x+3≤0
令log2x =t,则
2t2-7t+3≤0 (t∈R)
即
≤t≤3
又∵y=log2
•log2
=(log2x -a)(log2x -2)=(t-a)(t-2)
即y=(t-
)2-
(
≤t≤3)的最大值为2
若
≤
=
,即a≤
时,t=3时,y最大=3-a≠2,故不合题意
若
>
=
,即a>
时,t=
时,y最大=-
×(
-a)=2,即a=
,符合题意
∴函数f(x)=log2
•log2
的最大值为2时,实数a的值为
| 1 |
| 2 |
| 1 |
| 3 |
∴不等式2(log
| 1 |
| 2 |
| 21 |
| 3 |
即2(log2x)2-7log2x+3≤0
令log2x =t,则
2t2-7t+3≤0 (t∈R)
即
| 1 |
| 2 |
又∵y=log2
| x |
| 2a |
| x |
| 4 |
即y=(t-
| 2+a |
| 2 |
| (a-2)2 |
| 4 |
| 1 |
| 2 |
若
| 2+a |
| 2 |
| ||
| 2 |
| 7 |
| 4 |
| 3 |
| 2 |
若
| 2+a |
| 2 |
| ||
| 2 |
| 7 |
| 4 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 11 |
| 6 |
∴函数f(x)=log2
| x |
| 2a |
| x |
| 4 |
| 11 |
| 6 |
练习册系列答案
相关题目