题目内容

函数f(x)是定义域为R的奇函数,且x>0时,f(x)=9x-3x-1,则函数f(x)的零点个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为判断两函数交点个数问题,最后根据奇函数的对称性确定答案.
解答:解:∵函数f(x)是定义域为R的奇函数,
∴f(0)=0,所以0是函数f(x)的一个零点
当x>0时,令f(x)=9x-3x-1=0,
∴9x=3x+1,令p(x)=9x,令q(x)=3x+1,在同一坐标系作图如下
所以函数f(x)有一个零点,
又根据对称性知,当x<0时函数f(x)也有一个零点.
故选C.
点评:函数的奇偶性是函数最重要的性质之一,同时函数的奇偶性往往会和其他函数的性质结合应用,此题就与函数的零点结合,符合高考题的特点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网