ÌâÄ¿ÄÚÈÝ
£¨2013•Õ¢±±Çø¶þÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1Ϊµ½¶¨µãF£¨
£¬
£©µÄ¾àÀëÓëµ½¶¨Ö±Ïßl1£ºx+y+
=0µÄ¾àÀëÏàµÈµÄ¶¯µãPµÄ¹ì¼££¬ÇúÏßC2ÊÇÓÉÇúÏßC1ÈÆ×ø±êÔµãO°´Ë³Ê±Õë·½ÏòÐýת45¡ãÐγɵģ®
£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM£¨m£¬0£©£¨m£¾0£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬µãNÊǵãM¹ØÓÚÔµãµÄ¶Ô³Æµã£®Èô
=¦Ë
£¬Ö¤Ã÷£º
¡Í£¨
-¦Ë
£©£®
| ||
| 2 |
| ||
| 2 |
| 2 |
£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM£¨m£¬0£©£¨m£¾0£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬µãNÊǵãM¹ØÓÚÔµãµÄ¶Ô³Æµã£®Èô
| AM |
| MB |
| NM |
| NA |
| NB |
·ÖÎö£º£¨1£©ÉèP£¨x£¬y£©£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽºÍÁ½µã¼äµÄ¾àÀ빫ʽ£¬½¨Á¢¹ØÓÚx¡¢yµÄ·½³Ì²¢»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ÇúÏßC1µÄ·½³Ì£®·Ö±ðÈ¡x=0ºÍy=0½â³öÇúÏßC1ÔÚÖáÉϵĽؾ࣬¼´¿ÉÇúÏßC1Óë×ø±êÖáµÄ¸÷½»µãµÄ×ø±ê£®ÔÙÓÉÇúÏßÊÇÒÔF£¨
£¬
£©Îª½¹µã£¬Ö±Ïßl1£ºx+y+
=0Ϊ׼ÏßµÄÅ×ÎïÏߣ¬½«Æä˳ʱÕë·½ÏòÐýת45¡ãµÃµ½µÄÅ×ÎïÏß½¹µãΪ£¨1£¬0£©£¬×¼ÏßΪx=-1£¬¿ÉµÃÇúÏßC2µÄ·½³ÌÊÇy2=4x£»
£¨2£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Ö±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÓëÅ×ÎïÏßy2=4xÏûÈ¥x£¬µÃy2-
y-4m=0£¬¿ÉµÃy1y2=-4m£®ÉèN£¨-m£¬0£©£¬ÓÉ
=¦Ë
Ëã³ö¦Ë=-
£¬½áºÏÏòÁ¿×ø±êÔËË㹫ʽµÃµ½
-¦Ë
¹ØÓÚx1¡¢x2¡¢¦ËºÍmµÄ×ø±êʽ£¬´úÈë
•£¨
-¦Ë
£©²¢»¯¼ò£¬ÕûÀí¿ÉµÃ
•£¨
-¦Ë
£©=0£¬´Ó¶øµÃµ½¶ÔÈÎÒâµÄ¦ËÂú×ã
=¦Ë
£¬¶¼ÓÐ
¡Í£¨
-¦Ë
£©£®
| ||
| 2 |
| ||
| 2 |
| 2 |
£¨2£©ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Ö±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÓëÅ×ÎïÏßy2=4xÏûÈ¥x£¬µÃy2-
| 4 |
| k |
| AM |
| MB |
| y1 |
| y2 |
| NA |
| NB |
| NM |
| NA |
| NB |
| NM |
| NA |
| NB |
| AM |
| MB |
| NM |
| NA |
| NB |
½â´ð£º½â£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒâÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓÐ
=
£¬
»¯¼òµÃÅ×ÎïÏßC1µÄ·½³ÌΪ£ºx2+y2-2xy-4
x-4
y=0£®
Áîx=0£¬µÃy=0»òy=4
£»ÔÙÁîy=0£¬µÃx=0»òx=4
£¬
ËùÒÔ£¬ÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©¡¢£¨0£¬4
£©ºÍ£¨4
£¬0£©£®
µãF£¨
£¬
£©µ½l1£ºx+y+
=0µÄ¾àÀëΪ
=2£¬
ËùÒÔC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬
ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬´úÈëy2=4xµÃ
y2-
y-4m=0£¬¿ÉµÃy1y2=-4m£®
ÓÉ
=¦Ë
£¬µÃ£¨m-x1£¬-y1£©=¦Ë£¨x2-m£¬y2£©£¬¿ÉµÃ¦Ë=-
£¬
¶øN£¨-m£¬0£©£¬¿ÉµÃ
-¦Ë
=£¨x1+m£¬y1£©-¦Ë£¨x2+m£¬y2£©=£¨x1-¦Ëx2+£¨1-¦Ë£©m£¬y1-¦Ëy2£©
¡ß
=£¨2m£¬0£©£¬
¡à
•£¨
-¦Ë
£©=2m[x1-¦Ëx2+£¨1-¦Ë£©m]=2m[
+
-
+£¨1+
£©m]
=2m£¨y1+y2£©•
=2m£¨y1+y2£©•
=0
¡à¶ÔÈÎÒâµÄ¦ËÂú×ã
=¦Ë
£¬¶¼ÓÐ
¡Í£¨
-¦Ë
£©£®
(x-
|
|x+y+
| ||
|
»¯¼òµÃÅ×ÎïÏßC1µÄ·½³ÌΪ£ºx2+y2-2xy-4
| 2 |
| 2 |
Áîx=0£¬µÃy=0»òy=4
| 2 |
| 2 |
ËùÒÔ£¬ÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©¡¢£¨0£¬4
| 2 |
| 2 |
µãF£¨
| ||
| 2 |
| ||
| 2 |
| 2 |
|
| ||||||||||
|
ËùÒÔC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬
ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬´úÈëy2=4xµÃ
y2-
| 4 |
| k |
ÓÉ
| AM |
| MB |
| y1 |
| y2 |
¶øN£¨-m£¬0£©£¬¿ÉµÃ
| NA |
| NB |
¡ß
| NM |
¡à
| NM |
| NA |
| NB |
| y12 |
| 4 |
| y1 |
| y2 |
| y22 |
| 4 |
| y1 |
| y2 |
=2m£¨y1+y2£©•
| y1y2+4m |
| 4y2 |
| -4m+4m |
| 4y2 |
¡à¶ÔÈÎÒâµÄ¦ËÂú×ã
| AM |
| MB |
| NM |
| NA |
| NB |
µãÆÀ£º±¾Ìâ¸ø³ö¶¯µãµÄ¹ì¼££¬Çó¹ì¼£¶ÔÓ¦µÄ·½³Ì²¢ÌÖÂÛÓÉÇúÏß²úÉúµÄÏòÁ¿»¥Ïà´¹Ö±µÄÎÊÌ⣬×ÅÖØ¿¼²éÁ˵㵽ֱÏߵľàÀ빫ʽ¡¢Æ½ÃæÄÚÁ½µãµÄ¾àÀ빫ʽ¡¢Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµºÍÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËËãµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿