题目内容
【题目】在底面是菱形的四棱锥
中,
,点
在
上,且
,面
面
.
![]()
(1)证明:
;
(2)在棱
上是否存在一点
,使
平面
?证明你的结论.
【答案】(1)证明见解析;(2)
是棱
的中点.
【解析】
试题分析:(1)由菱形
,则
,可得
面
,又由面
面
,利用线面平行的性质定理,即可得出
;(2)当
是棱
的中点时,
平面
,根据三角形的中位线可得
,在利用菱形的性质,证得
,即可证明平面
平面
,从而得出
平面
.
试题解析:(1)∵菱形
,
∴
,又
面
,
面
,
∴
面
,又
面
,面
面
,
∴
,∴
,∴![]()
(2)当
是棱
的中点时,
平面
.
证明如下,如图取
的中点
,连结
,由于
为
中点,
为
中点,
所以
①
由
为
中点,得
,知
是
的中点,
连结
、
,设
,因为四边形
是菱形,则
为
的中点,
由于
是
的中点,
是
的中点,所以
②
由①
、②
知,平面
平面
,
又
平面
,
所以
平面
.
![]()
练习册系列答案
相关题目
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方
图:
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料,在犯错误的概率不超过
的前提下,你是否有理由认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附: ![]()
|
|
|
|
|
|