题目内容
【题目】已知椭圆
的右焦点为
,过
作
轴的垂线交椭圆
于点
(点
在
轴上方),斜率为
的直线交椭圆
于
,
两点,过点
作直线
交椭圆
于点
,且
,直线
交
轴于点
.
(1)设椭圆
的离心率为
,当点
为椭圆
的右顶点时,
的坐标为
,求
的值.
(2)若椭圆
的方程为
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,请说明理由.
【答案】(1)
;(2)见解析
【解析】
(1)
,得
求解即可(2),
,与椭圆联立消去y,由韦达定理得
进而得
,
,由
得k的方程求解即可
(1)由题
故
,
,
,所以
,
整理得
,
解得
或
(舍去),
所以
.
(2)由(1)知
,
,即
,
联立
,消去
,得
.
设点
的横坐标为
,由韦达定理得
,即
,
所以
.
因为
,所以
,
同理,
.
若有
,则
,
即
,而
,所以此方程无解,故不存在符合条件的k.
练习册系列答案
相关题目
【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 | |
男生 | 15 | ||
女生 | 15 | ||
合计 |
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
(I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
(II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
参考公式:
,![]()
参考数据:
,
,
,
.