题目内容
已知函数f(x)=(1+cotx)sin2x-2sin(x+
)sin(x-
).
(1)若tanα=2,求f(α);
(2)若x∈[
,
],求f(x)的取值范围.
| π |
| 4 |
| π |
| 4 |
(1)若tanα=2,求f(α);
(2)若x∈[
| π |
| 12 |
| π |
| 2 |
(1)∵f(x)=(1+cotx)sin2x-2sin(x+
)sin(x-
)=sin2x+sinxcosx+cos2x
=
+
sin2x+cos2x=
(sin2x+cos2x)+
∵tanα=2,∴sin2α=2sinαcosα=
=
=
,
cos2α=cos 2α-sin 2α=
=
=-
=
(sin2x+cos2x)+
由tanα=2得sin2α=
=
=
,
cos2α=
=
=-
,
所以f(α)=
.
(2)由(1)得f(x)=
(sin2x+cos2x)+
=
sin(2x+
)+
由x∈[
,
]得2x+
∈[
,
],所以sin(2x+
)∈[-
,1]
从而f(x)=
sin(2x+
)+
∈[0,
].
| π |
| 4 |
| π |
| 4 |
=
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵tanα=2,∴sin2α=2sinαcosα=
| 2sinα•cosα |
| sin 2α+cos 2α |
| 2tanα |
| 1+tan 2α |
| 4 |
| 5 |
cos2α=cos 2α-sin 2α=
| cos 2α-sin 2α |
| cos 2α+sin 2α |
| 1-tan 2α |
| 1+tan 2α |
| 3 |
| 5 |
=
| 1 |
| 2 |
| 1 |
| 2 |
由tanα=2得sin2α=
| 2sinαcosα |
| sin2α+cos2α |
| 2tanα |
| 1+tan2α |
| 4 |
| 5 |
cos2α=
| cos2α-sin2a |
| sin2α +cos2a |
| 1-tan2α |
| 1+tan2α |
| 3 |
| 5 |
所以f(α)=
| 3 |
| 5 |
(2)由(1)得f(x)=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
由x∈[
| π |
| 12 |
| π |
| 2 |
| π |
| 4 |
| 5π |
| 12 |
| 5π |
| 4 |
| π |
| 4 |
| ||
| 2 |
从而f(x)=
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
1+
| ||
| 2 |
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|