搜索
题目内容
若函数y=f(x﹣1)的图象与y=lnx的图象关于直线y=x对称,则f(x)为
[ ]
A.f(x)=e
x
B.f(x)=e
x
+1
C.f(x)=e
x
﹣1
D.f(x)=ln(x+1)
试题答案
相关练习册答案
B
练习册系列答案
尖子生新课堂课时作业系列答案
英才计划同步课时高效训练系列答案
金题1加1系列答案
100分闯关课时作业系列答案
学与练课时作业系列答案
优加学案课时通系列答案
1课1练系列答案
同步训练河北人民出版社系列答案
夺冠新课堂随堂练测系列答案
小状元随堂作业系列答案
相关题目
命题p:?x∈R,使得3
x
>x;命题q:若函数y=f(x-1)为奇函数,则函数y=f(x)的图象关于点(1,0)成中心对称.( )
A.p∨q真
B.p∧q真
C.?p真
D.?q假
给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2
-x
的反函数是y=-log
2
x;
③若函数f(x)=lg(x
2
+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.
其中所有正确命题的序号是
①②③
①②③
.
给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=
16-
4
x
的值域是[0,4);
③命题“?x∈R,x
2
-x>0”的否定是“?x∈R,x
2
-x≤0”;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.
其中所有正确命题的序号是
①②③
①②③
.
给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2
-x
(x>0)的反函数是y=-log
2
x(x>0);
③若函数f(x)=lg(x
2
+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(-1,0)对称.
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
给出以下三个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②若函数f(x)=lg(x
2
+ax-a)的值域是R,则a≤-4或a≥0;
③若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=-1对称.
其中正确的命题序号是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案