题目内容
如图,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成角的大小为______.
取BD中点F,连AF,EF,CF,设BD=1,
则BE=
,EF=
,AB=AD=
,AF=
,
由平面ABD⊥平面CBD,AF⊥BD
∴AF⊥平面BCD,
则∠AEF即为AE与平面BCD所成角
在Rt△AEF中,直角边AF=EF
∴∠AEF=45°
即AE与平面BCD所成角的大小为 45°
故答案为:45°.
则BE=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
由平面ABD⊥平面CBD,AF⊥BD
∴AF⊥平面BCD,
则∠AEF即为AE与平面BCD所成角
在Rt△AEF中,直角边AF=EF
∴∠AEF=45°
即AE与平面BCD所成角的大小为 45°
故答案为:45°.
练习册系列答案
相关题目