题目内容
已知各项均为正数的数列{an}的前n项和为Sn,且Sn,an,1成等差数列.
(1)求数列{an}的通项公式;
(2)若an2=2-bn,设Cn=
求数列{Cn}的前项和Tn.
(1)求数列{an}的通项公式;
(2)若an2=2-bn,设Cn=
| bn |
| an |
(1)由题意2an=Sn+1,an>0
当n=1时2a1=a1+1∴a1=1
n≥2时,sn=2an-1,sn-1=2an-1-1
两式相减an=2an-2an-1(n≥2)
整理得
=2(n≥2)(4分)
∴数列{an}1为首项,2为公比的等比数列.
∴an=a1•2n-1=1×2n-1=2n-1(5分)
(2)an2=2-bn=22n-2
∴bn=2-2n(6分)
Cn=
=
=
Tn =
+
+
+…+
+
①
Tn=
+
+…+
+
②
①-②
Tn=-4(
+
+…
) -
(9分)
=-4•
-
=-2(1-
)-
=
-2(11分)
∴Tn=
-4(12分)
当n=1时2a1=a1+1∴a1=1
n≥2时,sn=2an-1,sn-1=2an-1-1
两式相减an=2an-2an-1(n≥2)
整理得
| an |
| an-1 |
∴数列{an}1为首项,2为公比的等比数列.
∴an=a1•2n-1=1×2n-1=2n-1(5分)
(2)an2=2-bn=22n-2
∴bn=2-2n(6分)
Cn=
| bn |
| an |
| 2-2n |
| 2n-1 |
| 4-4n |
| 2n |
| 0 |
| 2 |
| -4 |
| 22 |
| -8 |
| 23 |
| 8-4n |
| 2n-1 |
| 4-4n |
| 2n |
| 1 |
| 2 |
| 0 |
| 22 |
| -4 |
| 23 |
| 8-4n |
| 2n |
| 4-4n |
| 2n+1 |
①-②
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 4-4n |
| 2n+1 |
=-4•
| ||||
1-
|
| 4-4n |
| 2n+1 |
| 1 |
| 2n-1 |
| 4-4n |
| 2n+1 |
| n+1 |
| 2n-1 |
∴Tn=
| n+1 |
| 2n-2 |
练习册系列答案
相关题目