题目内容
(2010•上海模拟)若等差数列{an}中,
=1,则公差d=
| lim |
| n→∞ |
| n(an+n) |
| Sn+n |
-2
-2
.分析:利用等差数列求出通项与前n项和,利用
=1,即可求出d.
| lim |
| n→∞ |
| n(an+n) |
| Sn+n |
解答:解:等差数列{an}中,an=a1+(n-1)d,Sn=na1+
d,
所以
=
=
;
=
=
=
=1
d=-2.
故答案为:-2.
| n(n-1) |
| 2 |
所以
| n(an+n) |
| Sn+n |
| n(a1+nd+n-d) | ||
na1+n +
|
| 2(a1+nd+n-d) |
| 2a1+2 +(n-1)d |
| lim |
| n→∞ |
| n(an+n) |
| Sn+n |
| lim |
| n→∞ |
| 2(a1+nd+n-d) |
| 2a1+2 +(n-1)d |
| lim |
| n→∞ |
| ||
|
| 2d+2 |
| d |
d=-2.
故答案为:-2.
点评:本题考查等差数列的通项公式与前n项和的求法,数列的极限的应用,考查计算能力.
练习册系列答案
相关题目