题目内容
已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是-| 1 |
| 4 |
(1)求f(x)的解析式;
(2)设直线l:y=t2-t(其中0<t<
| 1 |
| 2 |
| 1 |
| 2 |
(3)已知m≥0,n≥0,求证:
| 1 |
| 2 |
| 1 |
| 4 |
| n |
| m |
分析:(1)利用已知条件选择待定系数法确定函数解析式是解决本题的关键,充分借助二次函数的对称性解决该问题可以事半功倍;
(2)利用定积分表示出所求的图形面积是解决本题的关键.得出关于t的函数关系,根据函数解析式的类型选择合适的方法求解该函数的最值,利用导数求解其最小值;
(3)利用均值不等式进行放缩是证明该不等式的关键,根据已知的函数可以得出关于m,n的不等式.
(2)利用定积分表示出所求的图形面积是解决本题的关键.得出关于t的函数关系,根据函数解析式的类型选择合适的方法求解该函数的最值,利用导数求解其最小值;
(3)利用均值不等式进行放缩是证明该不等式的关键,根据已知的函数可以得出关于m,n的不等式.
解答:解:(1)由二次函数图象的对称性,可设f(x)=a(x-
)2-
,又f(0)=0∴a=1
故f(x)=x2-x.
(2)据题意,直线l与f(x)的图象的交点坐标为(t,t2-t),由定积分的几何意义知g(t)=S1(t)+
S2(t)=-
[(t2-t)-(x2-x)]dx-
[(x2-x)-(t2-t)]dx
=
[(x2-x)-(t2-t)]dx+
[(t2-t)-(x2-x)]dx
=[(
-
)-(t2-t)x]
+[(t2-t)x-(
-
)]
=-
t3+
t2-
t+
.
而g′(t)=-4t2+3t-
=-
(8t2-6t+1)=-
(4t-1)(2t-1)
令g′(t)=0?t=
,或t=
(不合题意,舍去)
当t∈(0,
),g′(t)<0,g(t)递减,t∈[
,
),g'(t)≥0,g(t)递增,
故当t=
时,g(t)有最小值.
(3)∵f(x)的最小值为-
∴m-
≥-
①n-
≥-
②
①+②得:m+n+
≥
+
③
又
(m+n)2+
(m+n)=
(m+n)(m+n+
)
由均值不等式和③知:
(m+n)≥
;?m+n+
≥
+
故
(m+n)2+
(m+n)=
(m+n)(m+n+
)
≥
(
+
)=m
+n
.
| 1 |
| 2 |
| 1 |
| 4 |
故f(x)=x2-x.
(2)据题意,直线l与f(x)的图象的交点坐标为(t,t2-t),由定积分的几何意义知g(t)=S1(t)+
| 1 |
| 2 |
| ∫ | t 0 |
| ∫ |
t |
=
| ∫ | t 0 |
| ∫ |
t |
=[(
| x3 |
| 3 |
| x2 |
| 2 |
| | | t 0 |
| x3 |
| 3 |
| x2 |
| 2 |
| | |
t |
=-
| 4 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 12 |
而g′(t)=-4t2+3t-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令g′(t)=0?t=
| 1 |
| 4 |
| 1 |
| 2 |
当t∈(0,
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
故当t=
| 1 |
| 4 |
(3)∵f(x)的最小值为-
| 1 |
| 4 |
| m |
| 1 |
| 4 |
| n |
| 1 |
| 4 |
①+②得:m+n+
| 1 |
| 2 |
| m |
| n |
又
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
由均值不等式和③知:
| 1 |
| 2 |
| mn |
| 1 |
| 2 |
| m |
| n |
故
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
≥
| mn |
| m |
| n |
| n |
| m |
点评:本题考查函数解析式的求解,考查二次函数的对称性.考查定积分求解曲边图形面积的思想和方法,导数求函数最值的工具作用.考查函数思想解决证明不等式问题、用到了均值定理进行放缩.
练习册系列答案
相关题目