题目内容
设函数f(x)=lnx+ln(2﹣x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为
,求a的值.
解答:
解:对函数求导得:
,定义域为(0,2)
(1)当a=1时,f′(x)=
﹣
+1,
当f′(x)>0,即0<x<
时,f(x)为增函数;当f′(x)<0,
<x<2时,f(x)为减函数.
所以f(x)的单调增区间为(0,
),单调减区间为(
,2)
(2)函数f(x)=lnx+ln(2﹣x)+ax(a>0).
,
>0,所以函数为单调增函数,(0,1]为单调递增区间.
最大值在右端点取到.![]()
所以a=
.
练习册系列答案
相关题目