题目内容
2.数列{an}中,a1=1,a2=$\frac{1}{2}$,且$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$(n≥2),则a2015=$\frac{1}{2015}$.分析 由$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$知数列{$\frac{1}{{a}_{n}}$}是等差数列,从而解得.
解答 解:∵$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$(n≥2),
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,
又∵$\frac{1}{{a}_{1}}$=1,$\frac{1}{{a}_{2}}$=2,
∴$\frac{1}{{a}_{n}}$=n,
∴a2015=$\frac{1}{2015}$,
故答案为:$\frac{1}{2015}$.
点评 本题考查了等差数列的判断及构造法的应用.
练习册系列答案
相关题目
14.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线l与双曲线的渐近线围成的三角形面积为$\frac{4\sqrt{3}}{3}$,双曲线的离心率为$\frac{2}{3}$$\sqrt{3}$,则双曲线的标准方程是( )
| A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{y}^{2}}{3}$-x2=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | y2-$\frac{{x}^{2}}{3}$=1 |