题目内容

设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an
(Ⅲ)设bn=
an
S
2
n
,求证:b1+b2+…+bn<1.
分析:(Ⅰ)由Sn+1=3Sn+2,知Sn+1+1=3(Sn+1),由此能够证明{Sn+1}是等比数列.
(Ⅱ)由Sn=3n-1,得到Sn-1=3n-1-1,由此能求出an=Sn-Sn-1=3n-3n-1=
2
3
×3n

(Ⅲ)bn=
an
S
2
n
=
2
3
×3n
(3n-1)2
,由此入手,能够证明b1+b2+…+bn<1.
解答:解:(Ⅰ)∵Sn+1=3Sn+2,
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=
2
3
×3n

(Ⅲ)证明:∵Sn=3n-1,an=
2
3
×3n

∴bn=
an
S
2
n
=
2
3
×3n
(3n-1)2
=
2
3
×3n
32n-2×3n+1

2
3
3n-2
=
2
3
×
1
3n-2

cn=
2
3
×
1
3 n-2

b1+b2+…+bn<c1+c2+c3+…+cn
=
2
3
(
1
3-2
1
9-2
+
1
27-2
+…+
1
3 n-2
)

2
3
(1+
1
3
+
1
9
+…+
1
3 n-1

=
2
3
×
1×(1-
1
3 n
)
1-
1
3

=1-
1
3 n
<1.
∴b1+b2+…+bn<1.
点评:本题考查数列与不等式的综合,综合题强,难度大,计算繁琐,易出错.解题时要认真审题,仔细解答,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网