题目内容
设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an;
(Ⅲ)设bn=
,求证:b1+b2+…+bn<1.
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an;
(Ⅲ)设bn=
| an | ||
|
分析:(Ⅰ)由Sn+1=3Sn+2,知Sn+1+1=3(Sn+1),由此能够证明{Sn+1}是等比数列.
(Ⅱ)由Sn=3n-1,得到Sn-1=3n-1-1,由此能求出an=Sn-Sn-1=3n-3n-1=
×3n.
(Ⅲ)bn=
=
,由此入手,能够证明b1+b2+…+bn<1.
(Ⅱ)由Sn=3n-1,得到Sn-1=3n-1-1,由此能求出an=Sn-Sn-1=3n-3n-1=
| 2 |
| 3 |
(Ⅲ)bn=
| an | ||
|
| ||
| (3n-1)2 |
解答:解:(Ⅰ)∵Sn+1=3Sn+2,
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n,
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=
×3n.
(Ⅲ)证明:∵Sn=3n-1,an=
×3n,
∴bn=
=
=
<
=
×
,
设cn=
×
,
b1+b2+…+bn<c1+c2+c3+…+cn
=
(
+
+
+…+
)
<
(1+
+
+…+
)
=
×
=1-
<1.
∴b1+b2+…+bn<1.
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n,
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=
| 2 |
| 3 |
(Ⅲ)证明:∵Sn=3n-1,an=
| 2 |
| 3 |
∴bn=
| an | ||
|
| ||
| (3n-1)2 |
| ||
| 32n-2×3n+1 |
<
| ||
| 3n-2 |
| 2 |
| 3 |
| 1 |
| 3n-2 |
设cn=
| 2 |
| 3 |
| 1 |
| 3 n-2 |
b1+b2+…+bn<c1+c2+c3+…+cn
=
| 2 |
| 3 |
| 1 |
| 3-2 |
| 1 |
| 9-2 |
| 1 |
| 27-2 |
| 1 |
| 3 n-2 |
<
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 3 n-1 |
=
| 2 |
| 3 |
1×(1-
| ||
1-
|
=1-
| 1 |
| 3 n |
∴b1+b2+…+bn<1.
点评:本题考查数列与不等式的综合,综合题强,难度大,计算繁琐,易出错.解题时要认真审题,仔细解答,注意放缩法的合理运用.
练习册系列答案
相关题目