题目内容
已知数列{an},满足a1=1,| 1 |
| an+1 |
| 1 |
| an |
分析:由a1=1,
=
+1结合等差数列的通项公式可求an=
,从而有anan+1=
=
-
,利用裂项求和即可
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵a1=1,
=
+1,
∴{
}是以1为首项以1为公差的等差数列
根据等差数列的通项公式可得,
=n即an=
∴anan+1=
=
-
∴S2011=1-
+
-
+…+
-
=1-
=
故答案为:
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
根据等差数列的通项公式可得,
| 1 |
| an |
| 1 |
| n |
∴anan+1=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S2011=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2011 |
| 1 |
| 2012 |
=1-
| 1 |
| 2012 |
| 2011 |
| 2012 |
故答案为:
| 2011 |
| 2012 |
点评:本题主要考查了等差数列的通项公式的应用,及数列求和的裂项求和,属于公式的简单综合运用.
练习册系列答案
相关题目