题目内容
计算下列各式的值:
(1)
lg
-
lg
+lg
;
(2)lg 52+
lg 8+lg 5×lg 20+(lg 2)2;
(3)
.
(1)
| 1 |
| 2 |
| 32 |
| 49 |
| 4 |
| 3 |
| 8 |
| 245 |
(2)lg 52+
| 2 |
| 3 |
(3)
lg
| ||||
| lg1.8 |
解 (1)法一 原式=
(5lg 2-2lg 7)-
×
lg 2+
(2lg 7+lg 5)
=
lg 2-lg 7-2lg 2+lg 7+
lg 5
=
lg 2+
lg 5
=
(lg 2+lg 5)
=
lg 10=
.
法二 原式=lg
-lg 4+lg 7
=
lg
=lg (
×
)=lg
=
.
(2)原式=2lg 5+2lg 2+lg 5×(2lg 2+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.
(3)原式=
=
=
.
| 1 |
| 2 |
| 4 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
=
| 5 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
法二 原式=lg
4
| ||
| 7 |
| 5 |
lg
4
| ||||
| 7×4 |
| 2 |
| 5 |
| 10 |
| 1 |
| 2 |
(2)原式=2lg 5+2lg 2+lg 5×(2lg 2+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.
(3)原式=
lg
| ||||||
| lg1.8 |
| ||||
| lg1.8 |
| 1 |
| 2 |
练习册系列答案
相关题目