题目内容
(2013•顺义区二模)已知函数f(x)=
+
.
(Ⅰ)求f(
)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递减区间.
(
| ||
| 2cosx |
| 1 |
| 2 |
(Ⅰ)求f(
| π |
| 3 |
(Ⅱ)求函数f(x)的最小正周期及单调递减区间.
分析:(I)把x=
直接代入函数的解析式,化简求得f(
)的值.
(II)由cosx≠0,得 x≠kπ+
,(k∈z ).化简函数的解析式为sin(2x+
),从而求得f(x)的最小正周期.再由2kπ+
≤2x+
≤2kπ+
,x≠kπ+
,k∈z,求得x的范围,即可求得函数的减区间.
| π |
| 3 |
| π |
| 3 |
(II)由cosx≠0,得 x≠kπ+
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 2 |
解答:解:(I)由函数的解析式可得 f(
)=
+
=
+
=0+
=
.…(4分)
(II)∵cosx≠0,得 x≠kπ+
,(k∈z )
故f(x)的定义域为{x|x≠kπ+
,(k∈z )}.
因为 f(x)=
+
=sinx(
cosx-sinx)+
=
sin2x-sin2x+
=
sin2x-
+
=
sin2x+
cos2x=sin(2x+
),
所以f(x)的最小正周期为 T=
=π.
由2kπ+
≤2x+
≤2kπ+
,x≠kπ+
,k∈z,
得 kπ+
≤x≤kπ+
,x≠kπ+
,k∈z,
所以,f(x)的单调递减区间为 (kπ+
,kπ+
),(kπ+
,kπ+
),k∈z.…(13分)
| π |
| 3 |
(
| ||||||||
2cos
|
| 1 |
| 2 |
=
(
| ||||||||||
2×
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(II)∵cosx≠0,得 x≠kπ+
| π |
| 2 |
故f(x)的定义域为{x|x≠kπ+
| π |
| 2 |
因为 f(x)=
(
| ||
| 2cosx |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
所以f(x)的最小正周期为 T=
| 2π |
| 2 |
由2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 2 |
得 kπ+
| π |
| 6 |
| 2π |
| 3 |
| π |
| 2 |
所以,f(x)的单调递减区间为 (kπ+
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| 2π |
| 3 |
点评:本题主要考查二倍角公式、两角和差的正弦公式、正弦函数的单调性,属于中档题.
练习册系列答案
相关题目