题目内容
【题目】[选修4-5:不等式选讲]已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
【答案】
(1)
解:当a=2时,f(x)=|2x﹣2|+2,
∵f(x)≤6,∴|2x﹣2|+2≤6,
|2x﹣2|≤4,|x﹣1|≤2,
∴﹣2≤x﹣1≤2,
解得﹣1≤x≤3,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}
(2)
解:∵g(x)=|2x﹣1|,
∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,
2|x﹣
|+2|x﹣
|+a≥3,
|x﹣
|+|x﹣
|≥
,
当a≥3时,成立,
当a<3时,
|a﹣1|≥
>0,
∴(a﹣1)2≥(3﹣a)2,
解得2≤a<3,
∴a的取值范围是[2,+∞)
【解析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.
(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣
|+|x﹣
|≥
,由此能求出a的取值范围.
本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.
【题目】某中学从高三男生中随机抽取
名学生的身高,将数据整理,得到的频率分布表如下所示,
组号 | 分组 | 频数 | 频率 |
第1组 |
| 5 | 0.050 |
第2组 |
| 0.350 | |
第3组 |
| 30 | |
第4组 |
| 20 | 0.200 |
第5组 |
| 10 | 0.100 |
合计 |
| 1.00 | |
(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;
(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.