题目内容

给出下面四个式子:
lim
x→2
x2-4
x-2

lim
x→∞
4x2+3
6x2-5

lim
x→+∞
(
x2+2
-
x2-2
)

lim
x→2
3x-1
-1
x-1
-1

其中极限等于
2
3
的有(  )
分析:由①
lim
x→2
x2-4
x-2
=
lim
x→2
(x+2)
lim
x→∞
4x2+3
6x2-5
=
lim
x→∞
4+
3
x2
6-
5
x2
lim
x→+∞
(
x2+2
-
x2-2
)
=
lim
x→+∞
4
2+x2+
x2-2
④x-1=t6,则
lim
x→2
3x-1
-1
x-1
-1
=
lim
t→1
t2-1
t3-1
=
lim
t→1
t+1
t2+t+1
,代入即可求解
解答:解:∵①
lim
x→2
x2-4
x-2
=
lim
x→2
(x+2)
=4
lim
x→∞
4x2+3
6x2-5
=
lim
x→∞
4+
3
x2
6-
5
x2
=
2
3

lim
x→+∞
(
x2+2
-
x2-2
)
=
lim
x→+∞
4
2+x2+
x2-2
=0
④x-1=t6,则
lim
x→2
3x-1
-1
x-1
-1
=
lim
t→1
t2-1
t3-1
=
lim
t→1
t+1
t2+t+1
=
2
3

故选C
点评:本题主要考查了函数极限的求解方法与技巧,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网