题目内容
(2013•昌平区二模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(I)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,请说明理由;
(II)设函数y=g(x)具有“P(±1)性质”,且当-
≤x≤
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.
(I)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,请说明理由;
(II)设函数y=g(x)具有“P(±1)性质”,且当-
| 1 |
| 2 |
| 1 |
| 2 |
分析:(I)根据题意先检验sin(x+a)=sin(-x)是否成立即可检验y=sinx是否具有“P(a)性质”
(II)由题意可得g(1+x)=g(-x),g(-1+x)=g(-x),据此递推关系可推断函数y=g(x)的周期,根据交点周期性出现的规律即可求解满足条件的m.
(II)由题意可得g(1+x)=g(-x),g(-1+x)=g(-x),据此递推关系可推断函数y=g(x)的周期,根据交点周期性出现的规律即可求解满足条件的m.
解答:解:(I)由sin(x+a)=sin(-x)得sin(x+a)=-sinx,
根据诱导公式得a=2kπ+π(k∈Z).
∴y=sinx具有“P(a)性质”,其中a=2kπ+π(k∈Z).…(4分)
(II)∵y=g(x)具有“P(±1)性质”,
∴g(1+x)=g(-x),g(-1+x)=g(-x),
∴g(x+2)=g(1+1+x)=g(-1-x)=g(x),从而得到y=g(x)是以2为周期的函数.
又设
≤x≤
,则-
≤1-x≤
,
g(x)=g(x-2)=g(-1+x-1)=g(-x+1)=|-x+1|=|x-1|=g(x-1).
再设n-
≤x≤n+
(n∈z),
当n=2k(k∈z),2k-
≤x≤2k+
,则-
≤x-2k≤
,
g(x)=g(x-2k)=|x-2k|=|x-n|;
当n=2k+1(k∈z),2k+1-
≤x≤2k+1+
,则
≤x-2k≤
,
g(x)=g(x-2k)=|x-2k-1|=|x-n|;
∴对于,n-
≤x≤n+
(n∈z),都有g(x)=|x-n|,而n+1-
≤x+1≤n+1+
,
∴g(x+1)=|(x+1)-(n+1)|=|x-n|=g(x),
∴y=g(x)是周期为1的函数.
①当m>0时,要使y=mx与y=g(x)有2013个交点,只要y=mx与y=g(x)在[0,1006)有2012个交点,而在[1006,1007]有一个交点.
∴y=mx过(
,
),从而得m=
②当m<0时,同理可得m=-
③当m=0时,不合题意.
综上所述m=±
…(14分)
根据诱导公式得a=2kπ+π(k∈Z).
∴y=sinx具有“P(a)性质”,其中a=2kπ+π(k∈Z).…(4分)
(II)∵y=g(x)具有“P(±1)性质”,
∴g(1+x)=g(-x),g(-1+x)=g(-x),
∴g(x+2)=g(1+1+x)=g(-1-x)=g(x),从而得到y=g(x)是以2为周期的函数.
又设
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
g(x)=g(x-2)=g(-1+x-1)=g(-x+1)=|-x+1|=|x-1|=g(x-1).
再设n-
| 1 |
| 2 |
| 1 |
| 2 |
当n=2k(k∈z),2k-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
g(x)=g(x-2k)=|x-2k|=|x-n|;
当n=2k+1(k∈z),2k+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
g(x)=g(x-2k)=|x-2k-1|=|x-n|;
∴对于,n-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴g(x+1)=|(x+1)-(n+1)|=|x-n|=g(x),
∴y=g(x)是周期为1的函数.
①当m>0时,要使y=mx与y=g(x)有2013个交点,只要y=mx与y=g(x)在[0,1006)有2012个交点,而在[1006,1007]有一个交点.
∴y=mx过(
| 2013 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2013 |
②当m<0时,同理可得m=-
| 1 |
| 2013 |
③当m=0时,不合题意.
综上所述m=±
| 1 |
| 2013 |
点评:本题考查周期函数,着重考查函数在一定条件下的恒成立问题,综合考察构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题.
练习册系列答案
相关题目