题目内容
在△ABC中,A、B、C的对边分别为a、b、c,且满足acosC-bcosB=bcosB-ccosA.
(1)求B的值;(2)若a=2,c=3,求b.
(1)求B的值;(2)若a=2,c=3,求b.
(1)根据正弦定理a=2rsinA,b=2rsinB,c=2rsinC
∵acosC-bcosB=bcosB-ccosA.
∴sinAcosC-sinBcosB=sinBcosB-sinCcosA
∴sinAcosC+sinCcosA=2sinBcosB
即sin(A+C)=sin2B,A+C=2B
∴A+C+B=3B=180°
∴B=60°
(2)由(1)知B=60°∴cosB=
根据余弦定理可知,b2=a2+c2-2accosB
将a=2,c=3代入可得b2=7
∴b=
∵acosC-bcosB=bcosB-ccosA.
∴sinAcosC-sinBcosB=sinBcosB-sinCcosA
∴sinAcosC+sinCcosA=2sinBcosB
即sin(A+C)=sin2B,A+C=2B
∴A+C+B=3B=180°
∴B=60°
(2)由(1)知B=60°∴cosB=
| 1 |
| 2 |
根据余弦定理可知,b2=a2+c2-2accosB
将a=2,c=3代入可得b2=7
∴b=
| 7 |
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
| B、1 | ||||
C、
| ||||
D、
|