题目内容
已知数列{an}的通项公式是an=
,其前n项和Sn=
,则项数n等于( )
| 2n-1 |
| 2n |
| 321 |
| 64 |
| A.13 | B.10 | C.9 | D.6 |
∵数列{an}的通项公式是an=
,
∴an=1-
,
∴Sn=(1-
)+(1-
)+(1-
)+…+(1-
)
=n-(
+
+
+…+
)
=n-
=n-1+
.
由Sn=
=n-1+
,
∴可得出n=6.
故选D
| 2n-1 |
| 2n |
∴an=1-
| 1 |
| 2n |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
=n-(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n |
=n-
| ||||
1-
|
| 1 |
| 2n |
由Sn=
| 321 |
| 64 |
| 1 |
| 2n |
∴可得出n=6.
故选D
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|