题目内容
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB.
分析:(1)由D,E分别是AB,PB的中点,根据三角形中位线定理,可得DE∥PA,利用线面平行的判定定理可得DE∥平面PAC;
(2)由线面垂直的性质,可得PC⊥AB,结合AB⊥BC和线面垂直的判定定理可得AB⊥平面PBC,再由线面垂直的性质可得AB⊥PB.
(2)由线面垂直的性质,可得PC⊥AB,结合AB⊥BC和线面垂直的判定定理可得AB⊥平面PBC,再由线面垂直的性质可得AB⊥PB.
解答:证明:(1)∵D,E分别是AB,PB的中点,
∴DE∥PA.
又∵PA?平面PAC,DE?平面PAC
∴DE∥平面PAC;
(2)∵PC⊥底面ABC,AB?底面ABC,
∴PC⊥AB,
∵AB⊥BC,PC∩BC=C,PC?平面PBC,BC?平面PBC,
∴AB⊥平面PBC,
∵PB?平面PBC,
∴AB⊥PB.
∴DE∥PA.
又∵PA?平面PAC,DE?平面PAC
∴DE∥平面PAC;
(2)∵PC⊥底面ABC,AB?底面ABC,
∴PC⊥AB,
∵AB⊥BC,PC∩BC=C,PC?平面PBC,BC?平面PBC,
∴AB⊥平面PBC,
∵PB?平面PBC,
∴AB⊥PB.
点评:本题考查直线与平面平行的判定,直线与平面垂直的性质,解答的关键是熟练掌握空间线面关系的判定定理及性质,属于中档题.
练习册系列答案
相关题目