题目内容
数列S| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
分析:通过数列的通项公式可知数列是由等比数列和等差数列的乘积构成,进而利用错位相减法求得问题的答案.
解答:解:Sn=
+
+
…+
Sn=
+
+
+…+
+
两式相减得
Sn=
+
+
+…+
-
=
+
-
=
-
∴Sn=3-
故答案为:3-
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 2n-2 |
| 2n |
| 2n-1 |
| 2n+1 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 2n-1 |
| 2n+1 |
∴Sn=3-
| 2n+3 |
| 2n |
故答案为:3-
| 2n+3 |
| 2n |
点评:本题主要考查了数列的求和问题.对于由等比数列和等差数列的乘积构成的数列求和时,可采用错位相减法.
练习册系列答案
相关题目