题目内容
设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
| an+1 | 2n-1•n(n+1) |
分析:(Ⅰ)依题意,可求得an+1=2(an-1+1),{an+1}是以a1+1=2为首项,2为公比的等比数列,从而可求得数列{an}的通项公式;
(Ⅱ)将an=2n-1代入bn=
可求得bn=2(
-
),从而可求得数列{bn}的前n项和Tn.
(Ⅱ)将an=2n-1代入bn=
| an+1 |
| 2n-1•n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(Ⅰ)当n=1时,a1=S1=2a1-1,得a1=1;
当n≥2时,an=Sn-Sn-1=2an-n-2an-1+(n-1)=2an-2an-1-1,
∴an=2an-1+1,即an+1=2(an-1+1),
所以{an+1}是以a1+1=2为首项,2为公比的等比数列,
∴an+1=2n,
∴an=2n-1.(6分)
(Ⅱ)∵bn=
=
=
=2(
-
),
∴Tn=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)
=
.(12分)
当n≥2时,an=Sn-Sn-1=2an-n-2an-1+(n-1)=2an-2an-1-1,
∴an=2an-1+1,即an+1=2(an-1+1),
所以{an+1}是以a1+1=2为首项,2为公比的等比数列,
∴an+1=2n,
∴an=2n-1.(6分)
(Ⅱ)∵bn=
| an+1 |
| 2n-1•n(n+1) |
| 2n |
| 2n-1•n(n+1) |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
点评:本题考查等比关系的确定与等比数列的通项公式的应用,突出考查裂项法求和,属于中档题.
练习册系列答案
相关题目