题目内容

已知定义在R上的函数f(x),对任意x∈R,都有f(x+16)=f(x)+f(8)成立,若函数f(x+1)的图象关于直线x=-1对称,则
f(2008)=(  )
分析:由函数f(x+1)的图象关于直线x=-1对称且由y=f(x+1)向右平移1个单位可得y=f(x)的图象可知函数y=f(x)的图象关于x=0对称即函数y=f(x)为偶函数,在已知条件中令x=-8可求f(8)及函数的周期,利用所求周期即可求解
解答:解:∵函数f(x+1)的图象关于直线x=-1对称且把y=f(x+1)向右平移1个单位可得y=f(x)的图象
∴函数y=f(x)的图象关于x=0对称,即函数y=f(x)为偶函数
∵f(x+16)=f(x)+f(8)
令x=-8可得f(8)=f(-8)+f(8)=2f(8),则f(8)=0
从而可得f(x+16)=f(x)即函数是以16为周期的周期函数
∴f(2008)=f(125×16+8)=f(8)=0
故选A
点评:本题主要考出了函数的图象的平移及函数图象的对称性的应用,利用赋值求解抽象函数的函数值,函数周期的求解是解答本题的关键所在
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网