题目内容

(1)A=N,B=R.f:x→数学公式x∈A,y∈B,f的作用下,数学公式的原象是多少?14的象是多少?
(2)设集合A=N,B={偶数},映射f:A→B把集合A中的元素a映射到集合B中的元素a2-a,则在映射f下,象20的原象是多少?
(3)f:A→B映射,其中A=R,B=(x,y)|x,y∈R,f:x→(x+1,x2+1)则A元素数学公式的象是多少?B元素(2,2)少?

解:(1) 由,解得 x=6,故的原象是6;
,故14的象是
(2)由a2-a=20,解得a=5 或 a=-4,
又a∈N,故a=5,即20的原象是5.
(3)的象是(+1,3),
,解得x=1,
故(2,2)的原象是1.
分析:(1) 由,解得x=6即为所求.
(2)由a2-a=20,解得a 值,再根据a∈N,求得a即为所求.
(3)把x=代入(x+1,x2+1),可得的象,由,解得x值即为(2,2)的原象.
点评:本题考查映射的定义,像与原像的定义,让学生不仅会求指定元素象与原象,而且明确求象与原象的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网