搜索
题目内容
在正方体ABCD-A
1
B
1
C
1
D
1
中,O为侧面BCC
1
B
1
的中心,E为棱BC的中点,则直线D
1
O与平面ABCD的交点
[ ]
A.在直线BC上
B.在直线AE上
C.在直线DE上
D.在直线CC
1
上
试题答案
相关练习册答案
C
练习册系列答案
360全优测评系列答案
为了灿烂的明天系列答案
口算心算速算天天练江苏人民出版社系列答案
开心考卷单元测试卷系列答案
开心试卷期末冲刺100分系列答案
驿站新跨越系列答案
黄冈小状元培优周课堂系列答案
小学期中期末培优卷系列答案
双基同步导航训练系列答案
双基同步导学导练系列答案
相关题目
16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)
如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°
.
如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点.
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.
如图在正方体ABCD-A
1
B
1
C
1
D
1
中,O是底面ABCD的中心,B
1
H⊥D
1
O,H为垂足,则B
1
H与平面AD
1
C的位置关系是( )
A.垂直
B.平行
C.斜交
D.以上都不对
在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案