题目内容
已知{an}为等差数列,Sn为其前n项和,若a1=
,a1+a2+a3=3,则Sn=
n2+
n
n2+
n.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
分析:设等差数列的公差为d,由题意可得 3×
+
d=3,解得d的值,再由Sn=na1+
d,运算求得结果.
| 1 |
| 2 |
| 3×2 |
| 2 |
| n(n-1) |
| 2 |
解答:解:设等差数列的公差为d,由题意可得 3×
+
d=3,解得d=
,
故Sn=na1+
d=
+
×
=
n2+
n,
故答案为
n2+
n.
| 1 |
| 2 |
| 3×2 |
| 2 |
| 1 |
| 2 |
故Sn=na1+
| n(n-1) |
| 2 |
| n |
| 2 |
| n(n-1) |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
故答案为
| 1 |
| 4 |
| 1 |
| 4 |
点评:本题主要考查等差数列的前n项和公式的应用,属于基础题.
练习册系列答案
相关题目