题目内容
如果圆柱的轴截面周长为定值4,则圆柱体积的最大值为______.
设圆柱的底面半径为r,高为h,则4r+2h=4,即2r+h=2
∴2r+h=r+r+h≥3
∴r2h≤(
)3
∴V=πr2h≤
π
∴圆柱体积的最大值为
π
故答案为:
π
∴2r+h=r+r+h≥3
| 3 | r2h |
∴r2h≤(
| 2 |
| 3 |
∴V=πr2h≤
| 8 |
| 27 |
∴圆柱体积的最大值为
| 8 |
| 27 |
故答案为:
| 8 |
| 27 |
练习册系列答案
相关题目