题目内容

6、已知定义在实数集R上的函数y=f(x)满足:f(x+y)=f(x)+f(y),且f(x)不恒等于零,则y=f(x)是(  )
分析:由椭圆可得:令x=y=0时,则有f(0)=0,所以令y=-x,则有f(0)=f(x)+f(-x)=0,则有f(-x)=-f(x),进而得到答案.
解答:证明:当x=y=0时,则有f(0)=f(0)+f(0)=2(0),
所以f(0)=0,
所以令y=-x,则有f(0)=f(x)+f(-x)=0,
则有f(-x)=-f(x),
又因为函数的定义域为R,
所以符合奇函数定义,即函数y=f(x)是奇函数.
故选A.
点评:解决此类问题的关键是熟练掌握奇函数的定义域,以及利用赋值法求函数值并且证明函数的奇偶性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网