题目内容
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=3an+2n,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=3an+2n,求数列{bn}的前n项和Tn.
分析:(Ⅰ)等差数列{an}的前n项和为Sn,且a3=5,S15=225,利用等差数列的通项公式和前n项和公式列出方程组,先求出等差数列的首项和公差,由此能求了an.
(Ⅱ)由(Ⅰ)知bn=3an+2n=32n-1+2n=
•9n+2n,由此利用分组求和法能求出数列{bn}的前n项和Tn.
(Ⅱ)由(Ⅰ)知bn=3an+2n=32n-1+2n=
| 1 |
| 3 |
解答:解:(Ⅰ)∵等差数列{an}的前n项和为Sn,且a3=5,S15=225,
∴
,
解得
,
∴an=2n-1.…(6分)
(Ⅱ)∵an=2n-1,
∴bn=3an+2n=32n-1+2n=
•9n+2n,
∴Tn=b1+b2+…+bn=
(9+92+93+…+9n)+2(1+2+3+…+n)
=
•
+n(n+1)
=
•9n+n(n+1)-
…(12分)
∴
|
解得
|
∴an=2n-1.…(6分)
(Ⅱ)∵an=2n-1,
∴bn=3an+2n=32n-1+2n=
| 1 |
| 3 |
∴Tn=b1+b2+…+bn=
| 1 |
| 3 |
=
| 1 |
| 3 |
| 9(1-9n) |
| 1-9 |
=
| 3 |
| 8 |
| 3 |
| 8 |
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,仔细解答,注意待定系数法和分组求和法的合理运用.
练习册系列答案
相关题目