题目内容
设等比数列的前项之和为,已知,且,则 .
.
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。
(1)证明:数列是“平方递推数列”,且数列为等比数列。
(2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。
(3)记,求数列的前项之和,并求使的的最小值。
设等比数列的前项之和为,已知,且,则
设数列的前项之和为,若(),则 ( )
A.是等差数列,但不是等比数列; B.是等比数列,但不是等差数列;
C.是等差数列,或是等比数列; D.可以既不是等比数列,也不是等差数列.