题目内容
设集合S={A0,A1,A2,A3},在S上定义运算⊕为:Ai⊕Aj=Ak,其中k为i+j被 4除的余数,i,j=0,1,2,3.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为 ( )
| A.1 | B.2 | C.3 | D.4 |
当x=A0时,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0
当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0
当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2≠A0
当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0
则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:2个.
故选B.
当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0
当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2≠A0
当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0
则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:2个.
故选B.
练习册系列答案
相关题目