题目内容
在数1与100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这(n+2)个数的乘积记作Tn,再令an=lgTn,n≥1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
,求数列{bn}的前n项和Sn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
| an | 2n |
分析:(I)设这个等比数列为{cn},则c1=1,cn+2=qn+1=100,由此利用等比数列的性质和等差数列的前n项和公式能推导出这n+2个数的乘积Tn=10n+2,从而能求出数列{an}的通项公式.
(II)由an=n+2,得到bn=
=
,由此利用错位相减法能求出Sn.
(II)由an=n+2,得到bn=
| an |
| 2n |
| n+2 |
| 2n |
解答:解:(I)∵在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,
∴设这个等比数列为{cn},则c1=1,cn+2=qn+1=100,
又∵这n+2个数的乘积计作Tn,
∴Tn=q•q2•q3×…×qn+1
=q1+2+3+…+n•qn+1
=q
(n+1)×100
=100
×100
=10n+2,
又∵an=lgTn,
∴an=lg10n+2=n+2,n∈N*.
(II)∵an=n+2,
∴bn=
=
,
∴Sn=
+
+
+…+
+
,①
Sn=
+
+
+…+
,②
①-②,得:
Sn=
+
+
+…+
-
=1+
-
=2-
-
,
∴Sn=4-
.
∴设这个等比数列为{cn},则c1=1,cn+2=qn+1=100,
又∵这n+2个数的乘积计作Tn,
∴Tn=q•q2•q3×…×qn+1
=q1+2+3+…+n•qn+1
=q
| n |
| 2 |
=100
| n |
| 2 |
=10n+2,
又∵an=lgTn,
∴an=lg10n+2=n+2,n∈N*.
(II)∵an=n+2,
∴bn=
| an |
| 2n |
| n+2 |
| 2n |
∴Sn=
| 3 |
| 2 |
| 4 |
| 22 |
| 5 |
| 23 |
| n+1 |
| 2n-1 |
| n+2 |
| 2n |
| 1 |
| 2 |
| 3 |
| 22 |
| 4 |
| 23 |
| 5 |
| 24 |
| n+2 |
| 2n+1 |
①-②,得:
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n+2 |
| 2n+1 |
=1+
| ||||
1-
|
| n+2 |
| 2n+1 |
=2-
| 1 |
| 2n |
| n+2 |
| 2n+1 |
∴Sn=4-
| n+4 |
| 2n |
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目