题目内容
已知数列{an}满足:a1=1,an+1=
(n∈N*)
(1)证明:数列{
}为等差数列,并求{an}的通项公式
(2)如果数列{
}的前n项和为Sn,求Sn.
(1)证明:∵an+1=
∴
-
=1
∵a1=1,
∴数列{
}是以1为首项,1为公差的等差数列,
∴
=n,∴an=
;
(2)解:
=n•2n
∴Sn=1•2+2•22+…+n•2n①
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1②
①-②可得-Sn=2+22+23+…+2n-n•2n+1=
-n•2n+1=(1-n)•2n+1•2n+1-2
∴Sn=(n-1)•2n+1+2.
分析:(1)an+1=
可化为
-
=1,即可得到数列{
}为等差数列,从而可求{an}的通项公式;
(2)确定数列的通项,利用错位相减法,可求数列的和.
点评:本题考查等差数列的证明,考查数列的通项与求和,确定数列的通项是关键.
∴
∵a1=1,
∴数列{
∴
(2)解:
∴Sn=1•2+2•22+…+n•2n①
∴2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1②
①-②可得-Sn=2+22+23+…+2n-n•2n+1=
∴Sn=(n-1)•2n+1+2.
分析:(1)an+1=
(2)确定数列的通项,利用错位相减法,可求数列的和.
点评:本题考查等差数列的证明,考查数列的通项与求和,确定数列的通项是关键.
练习册系列答案
相关题目