题目内容
已知函数f(x)=
cos(2x-
),x∈[-
,
]
(1)求函数f(x)的单调区间.
(2)求函数f(x)在区间[-
,
]上的最小值和最大值,并求出取得最值时x的值.
| 2 |
| π |
| 4 |
| π |
| 8 |
| π |
| 2 |
(1)求函数f(x)的单调区间.
(2)求函数f(x)在区间[-
| π |
| 8 |
| π |
| 2 |
分析:(1)x∈[-
,
]⇒2x-
∈[-
,
],利用余弦函数的单调性即可求得f(x)=
cos(2x-
)的单调区间;
(2)利用(1)f(x)=
cos(2x-
)在区间[-
,
]上为增函数,在区间[
,
]上为减函数,即可求得其最小值和最大值及取得最值时x的值.
| π |
| 8 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
| 2 |
| π |
| 4 |
(2)利用(1)f(x)=
| 2 |
| π |
| 4 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 2 |
解答:解:(1)∵f(x)=
cos(2x-
),x∈[-
,
],
∴2x-
∈[-
,
],
由-
≤2x-
≤0得:-
≤x≤
,
∴当x∈[-
,
]时,函数f(x)的单调递增区间为[-
,
];
由0≤2x-
≤
得,
≤x≤
,
∴当x∈[-
,
]时,函数f(x)的单调减区间为[
,
];
(2)∵f(x)=
cos(2x-
)在区间[-
,
]上为增函数,在区间[
,
]上为减函数,
又f(-
)=0,
f(
)=
,
f(
)=
cos(π-
)=-
cos
=-1,
∴函数f(x)在区间[-
,
]上的最大值为
,此时x=
,最小值为-1,此时x=
.
| 2 |
| π |
| 4 |
| π |
| 8 |
| π |
| 2 |
∴2x-
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
由-
| π |
| 2 |
| π |
| 4 |
| π |
| 8 |
| π |
| 8 |
∴当x∈[-
| π |
| 8 |
| π |
| 2 |
| π |
| 8 |
| π |
| 8 |
由0≤2x-
| π |
| 4 |
| 3π |
| 4 |
| π |
| 8 |
| π |
| 2 |
∴当x∈[-
| π |
| 8 |
| π |
| 2 |
| π |
| 8 |
| π |
| 2 |
(2)∵f(x)=
| 2 |
| π |
| 4 |
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
| π |
| 2 |
又f(-
| π |
| 8 |
f(
| π |
| 8 |
| 2 |
f(
| π |
| 2 |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
∴函数f(x)在区间[-
| π |
| 8 |
| π |
| 2 |
| 2 |
| π |
| 8 |
| π |
| 2 |
点评:本题考查余弦函数的单调性,考查余弦函数的定义域和值域,考查运算能力,属于中档题.
练习册系列答案
相关题目