题目内容
【题目】华为董事会决定投资开发新款软件,估计能获得
万元到
万元的投资收益,讨论了一个对课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的
.
(1)请分析函数
是否符合华为要求的奖励函数模型,并说明原因;
(2)若华为公司采用模型函数
作为奖励函数模型,试确定正整数
的取值集合.
【答案】(1)不符合,原因见解析(2)
的取值集合为![]()
【解析】
(1)根据题意,总结奖励模型需要满足的条件①
在定义域
上是增函数;②
恒成立;③
恒成立;判断单调性及最值,即可求解;
(2)由题意,依此判断分段函数的单调性,最大值和
,即可求解参数范围,由
为正整数,即可确定取值集合.
(1)设奖励函数模型为
,按公司对函数模型的基本要求,函数
满足:当
时,①
在定义域
上是增函数;②
恒成立;③
恒成立.对于函数模型
.当
时,
是增函数,
所以
不恒成立.故该函数模型不符合公司要求.
(2)对于函数模型
,当
时,
在定义域
上是增函数,且
恒成立;当
时,
,只有
时,
在定义域
上是增函数;要使
在
恒成立,
,即
;要使
恒成立对
恒成立,即
,即
恒成立,所以
;
综上所述,
,所以满足条件的正整数a的取值集合为![]()
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】某大型超市抽查了100天该超市的日纯利润数据,并将日纯利润数据分成以下几组(单位:万元):
,
,
,
,
,
,统计结果如下表所示:
组别 |
|
|
|
|
|
|
频数 | 5 | 20 | 30 | 30 | 10 | 5 |
以上述样本分布的频率估计总体分布的概率,解决下列问题:
(1)从该大型超市近几年的销售记录中抽出5天,求其中日纯利润在区间
内的天数不少于2的概率;
(2)该超市经理由频数分布表可以认为,该大型超市每天的纯利润
服从正态分布
,其中,
近似为样本平均数
(每组数据取区间的中点值).
①试利用该正态分布,估计该大型超市1000天内日纯利润在区间
内的天数(精确到个位);
②该大型超市负责人根据每日的纯利润给超市员工制定了两种不同的奖励方案:
方案一:直接发放奖金,日纯利润低于
时每名员工发放奖金70元,日纯利润不低于
时每名员工发放奖金90元;
方案二:利用抽奖的方式获得奖金,其中日纯利润不低于
时每位员工均有两次抽奖机会,日纯利润低于
时每位员工只有一次抽奖机会;每次抽奖的奖金及对应的概率分别为
金额 | 50元 | 100元 |
概率 |
|
|
小张恰好为该大型超市的一名员工,则从数学期望的角度看,小张选择哪种奖励方案更有利?
参考数据:若
,则
,
.