题目内容
已知等差数列{an}、{bn}的前n项和分别为Sn、Tn,若
=
,则
=
.
| Sn |
| Tn |
| 3n+15 |
| 5n+7 |
| a9 |
| b9 |
| 33 |
| 46 |
| 33 |
| 46 |
分析:本题考察的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S2n-1=(2n-1)•an,我们可得a9=
,b9=
,则
=
,代入 若
=
,即可得到答案.
| S17 |
| 17 |
| T17 |
| 17 |
| a9 |
| b9 |
| S17 |
| T17 |
| Sn |
| Tn |
| 3n+15 |
| 5n+7 |
解答:解:∵在等差数列中S2n-1=(2n-1)•an,
∴a9=
,b9=
,
则
=
,
又∵
=
=
=
=
故答案为:
.
∴a9=
| S17 |
| 17 |
| T17 |
| 17 |
则
| a9 |
| b9 |
| S17 |
| T17 |
又∵
| Sn |
| Tn |
| 3n+15 |
| 5n+7 |
| a9 |
| b9 |
| S17 |
| T17 |
| 3×17+15 |
| 5×17+7 |
| 33 |
| 46 |
故答案为:
| 33 |
| 46 |
点评:在等差数列中,S2n-1=(2n-1)•an,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.
练习册系列答案
相关题目