题目内容

已知函数f(x)=sinx+cosx,
(1)若f(x)=2f(-x),求
cos2x-sinxcosx1+sin2x
的值;
(2)设函数F(x)=f(x)•f(-x)+f2(x),试讨论函数F(x)的单调性.
分析:(I)首先得出f(-x)=cosx-sinx,进而化简sinx+cosx=2(cosx-sinx)得出tanx的值,然后将所求式子中的“1”用sin2x+cos2x替换,再分子分母同时除以cos2x,即可求出结果;
(II)先由题意求出F(x)=cos2x+sin2x+1,再由两角和的正弦公式化简,由正弦函数的单调区间和整体思想求出F(x)的单调区间.
解答:解:(Ⅰ)∵f(x)=sinx+cosx,∴f(-x)=cosx-sinx.
又∵f(x)=2f(-x),
∴sinx+cosx=2(cosx-sinx)且cosx≠0∴tanx=
1
3

cos2x-sinxcosx
1+sin2x
=
cos2x-sinxcosx
cos2x+2sin2x

=
1-tanx
1+2tan2x
=
1-
1
3
1+2×(
1
3
)2
=
6
11

(Ⅱ)由题意知,F(x)=cos2x-sin2x+1+2sinxcosx
=cos2x+sin2x+1=
2
sin(2x+
π
4
)+1

-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ
(k∈z)得
-
8
+kπ≤x≤
π
8
+kπ
(k∈z),
π
2
+2kπ≤2x+
π
4
2
+2kπ
(k∈z)得,
π
8
+kπ≤x≤
8
+kπ
(k∈z),
∴函数F(x)的单调递增区间为 [-
8
+kπ,
π
8
+kπ]
(k∈z),
单调递减区间为[
π
8
+kπ,
8
+kπ]
  (k∈z).
点评:本题考查了三角函数的化简求值以及复合函数的单调性,熟练掌握公式和正弦函数的性质是解题的关键,同时注意“1”和sin2x+cos2x的灵活转化,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网