题目内容
定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.
f(a2-a-1)+f(4a-5)>0?f(a2-a-1)>-f(4a-5),
因为函数y=f(x)是奇函数,所以上式变为f(a2-a-1)>f(-4a+5),
又因为定义在[-1,1]上的函数y=f(x)是减函数,所以
解得:1≤a≤
因为函数y=f(x)是奇函数,所以上式变为f(a2-a-1)>f(-4a+5),
又因为定义在[-1,1]上的函数y=f(x)是减函数,所以
|
解得:1≤a≤
-3+
| ||
| 2 |
练习册系列答案
相关题目