题目内容
已知函数f(x)=(1)证明f(x)在(1,+∞)上是增函数;
(2)如果对一切x∈[4,+∞),f(x)-m≥0恒成立,求m的范围.
解:(1)∵f′(x)=
,
当x>1时,x2>
>0,∴f′(x)>0,f(x)在(1,+∞)上为增函数.
(2)∵f(x)在(1,+∞)上为增函数,∴f(x)在[4,+∞)上的最小值为f(4)=
.
由f(x)-m≥0对一切x∈[4,+∞)恒成立,
∴m≤
为所求.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|